Link between Hosoya index and Fibonacci numbers
نویسندگان
چکیده
منابع مشابه
Wiener Index and Hosoya Polynomial of Fibonacci and Lucas Cubes
In the language of mathematical chemistry, Fibonacci cubes can be defined as the resonance graphs of fibonacenes. Lucas cubes form a symmetrization of Fibonacci cubes and appear as resonance graphs of cyclic polyphenantrenes. In this paper it is proved that the Wiener index of Fibonacci cubes can be written as the sum of products of four Fibonacci numbers which in turn yields a closed formula f...
متن کاملEnergy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملRelationship between the Hosoya polynomial and the hyper-Wiener index
The Hosoya polynomial of a graph, H(G, z), has the property that its first derivative, evaluated at z = 1, equals the Wiener index, i.e., W(G) = H’(G, 1). In this paper, an equation is presented that gives the hyper-Wiener index, WW(G), in terms of the first and second derivatives of H(G,z). Also defined here is a hyper-Hosoya polynomial, HH(G,r), which has the property WW(G) = HH’(G, l), analo...
متن کاملRestricted Permutations, Fibonacci Numbers, and k-generalized Fibonacci Numbers
In 1985 Simion and Schmidt showed that the number of permutations in Sn which avoid 132, 213, and 123 is equal to the Fibonacci number Fn+1. We use generating function and bijective techniques to give other sets of pattern-avoiding permutations which can be enumerated in terms of Fibonacci or k-generalized Fibonacci numbers.
متن کاملFibonacci Numbers
One can prove the following three propositions: (1) For all natural numbers m, n holds gcd(m,n) = gcd(m, n + m). (2) For all natural numbers k, m, n such that gcd(k, m) = 1 holds gcd(k,m · n) = gcd(k, n). (3) For every real number s such that s > 0 there exists a natural number n such that n > 0 and 0 < 1 n and 1 n ¬ s. In this article we present several logical schemes. The scheme Fib Ind conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2018
ISSN: 1787-2405,1787-2413
DOI: 10.18514/mmn.2018.1415